Lecture 21

Hierarchy Theorems

Recall:

Recall:

• $\langle M \rangle$ denotes the encoding of M.

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.
- Every TM is represented by infinitely many strings.

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Theorem: There exists a TM U such that $\forall x, \alpha \in \{0,1\}^*$, $U(x, \alpha) = M_{\alpha}(x)$.

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Theorem: There exists a TM U such that $\forall x, \alpha \in \{0,1\}^*$, $U(x, \alpha) = M_{\alpha}(x)$.

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

if M_{α} halts on x within T steps,

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.
- Every TM is represented by infinitely many strings. (Add 1s in the end that are ignored.)

if M_{α} halts on x within T steps, then U on (α, x) halts in $CT \log T$ steps,

output of M_{α} on x**Theorem:** There exists a TM U such that $\forall x, \alpha \in \{0,1\}^*$, $U(x, \alpha) = M_{\alpha}(x)$. Moreover,

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.
- Every TM is represented by infinitely many strings. (Add 1s in the end that are ignored.)

if M_{α} halts on x within T steps, then U on (α, x) halts in $CT \log T$ steps, where C depends

output of M_{α} on x**Theorem:** There exists a TM U such that $\forall x, \alpha \in \{0,1\}^*$, $U(x, \alpha) = M_{\alpha}(x)$. Moreover,

Recall:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

only on $M'_{\alpha}s$ alphabet size, number of tapes, and number of states.

• Every TM is represented by infinitely many strings. (Add 1s in the end that are ignored.)

output of M_{α} on x**Theorem:** There exists a TM U such that $\forall x, \alpha \in \{0,1\}^*$, $U(x, \alpha) = M_{\alpha}(x)$. Moreover, if M_{α} halts on x within T steps, then U on (α, x) halts in $CT \log T$ steps, where C depends

Diagonalization is any technique that relies solely upon the following properties of TMs:

Diagonalization is any technique that relies solely upon the following properties of TMs: • The existence of an effective representation of Turing machines by strings.

- **Diagonalization** is any technique that relies solely upon the following properties of TMs: • The existence of an effective representation of Turing machines by strings.
- The ability of one TM to simulate any another without much overhead in running time or space.

- **Diagonalization** is any technique that relies solely upon the following properties of TMs: • The existence of an effective representation of Turing machines by strings.
- The ability of one TM to simulate any another without much overhead in running time or space.

Diagonalization is used in Hierarchy theorems and Ladner's theorem.

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying $f(n)\log f(n) = o(g(n))$

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

o-notation:

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

o-notation: $\forall c > 0, \exists n_0 > 0$

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

o-notation: $\forall c > 0, \exists n_0 > 0$ such that $c \cdot f(n) \log f(n) < g(n)$,

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

o-notation: $\forall c > 0, \exists n_0 > 0$ such that $c \cdot f(n)\log f(n) < g(n)$, for all $n > n_0$.

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Theorem: If $f : \mathbb{N} \to \mathbb{N}$, $g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying $f(n) \log f(n) = o(g(n))$, then $\mathsf{DTIME}(f(n)) \subset \mathsf{DTIME}(g(n))$. **Proof:**

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

• Runs UTM U on (x, x) for g(|x|) steps.

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time,

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, D outputs 0.

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, D outputs 0.

Let L(D) denote the language decided by D.

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Let L(D) denote the language decided by D.

Claim 1: $L(D) \in \text{DTIME}(g(n))$.

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Let L(D) denote the language decided by D. Claim 1: $L(D) \in \text{DTIME}(g(n))$. Claim 2: $L(D) \notin DTIME(f(n))$.

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Let L(D) denote the language decided by D.

Claim 2: $L(D) \notin DTIME(f(n))$.

- Claim 1: $L(D) \in DTIME(g(n))$. Proof: By definition ... using time-constructibility...

Theorem: If $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ are time-constructible functions satisfying

 $f(n)\log f(n) = o(g(n))$, then $DTIME(f(n)) \subset DTIME(g(n))$.

Proof: Consider a DTM *D* that on input *x*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Let L(D) denote the language decided by D.

Claim 2: $L(D) \notin DTIME(f(n))$. **Proof:** By contradiction ...

- **Claim 1:** $L(D) \in \text{DTIME}(g(n))$. **Proof:** By definition ... using time-constructibility...

Claim 2: $L(D) \notin DTIME(f(n))$.

Claim 2: $L(D) \notin DTIME(f(n))$. **Proof:**

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

Claim 2: $L(D) \notin \text{DTIME}(f(n))$.

- **Proof:** Suppose \exists a DTM M with running time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.

Claim 2: $L(D) \notin \text{DTIME}(f(n))$.

- **Proof:** Suppose \exists a DTM M with running time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x

Claim 2: $L(D) \notin DTIME(f(n))$.

- **Proof:** Suppose \exists a DTM M with running time O(f(n)) that decides L(D).
- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

We know that $\exists n_0$ such that $\forall n \ge n_0$, $c'f(n)\log f(n) < g(n)$.

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

• M on any input x halts within cf(|x|) steps, where c is a constant.

Let x be a binary representation of M whose length is at least n_0 .

- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...
- We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is at least n_0 .

What happens when D gets x as input?

We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is at least n_0 .

What happens when D gets x as input?

We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Recall *D*:

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is at least n_0 .

What happens when D gets x as input?

We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Recall *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

• M on any input x halts within cf(|x|) steps, where c is a constant.

Let x be a binary representation of M whose length is at least n_0 .

What happens when D gets x as input?

• M_r halts on x within g(|x|) steps of U.

- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...
- We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Recall *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is at least n_0 .

What happens when D gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_{x} accepts x,

We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Recall *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is at least n_0 .

What happens when D gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_x accepts x,
- If M_x rejects x,

We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Recall *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is at least n_0 .

What happens when D gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_x accepts x, then D rejects x.
- If M_x rejects x,

We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Recall *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is at least n_0 .

What happens when D gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_x accepts x, then D rejects x.
- If M_x rejects x, then D accepts x.

We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Recall *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Claim 2: $L(D) \notin DTIME(f(n))$.

Proof: Suppose \exists a DTM M with running time O(f(n)) that decides L(D).

- M on any input x halts within cf(|x|) steps, where c is a constant.
- UTM U can simulate M on input x within $c'f(|x|)\log f(|x|)$ steps, where c' is a constant...

Let x be a binary representation of M whose length is at least n_0 .

What happens when D gets x as input?

- M_r halts on x within g(|x|) steps of U.
- If M_x accepts x, then D rejects x.
- If M_x rejects x, then D accepts x.

We know that $\exists n_0$ such that $\forall n \geq n_0$, $c'f(n)\log f(n) < g(n)$. ($\therefore f(n)\log f(n) = o(g(n))$)

Recall *D*:

- Runs UTM U on (x, x) for g(|x|) steps.
- If M_x halts on x and writes some bits on the output tape within this time, then D outputs the opposite of the first bit.
- Else, *D* outputs 0.

Nondeterministic Time Hierarchy Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are

Nondeterministic Time Hierarchy Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are

time-constructible functions satisfying f(n + 1) = o(g(n)), then

prem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are n + 1) = o(g(n)), then

Nondeterministic Time Hierarchy Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are

time-constructible functions satisfying f(n + 1) = o(g(n)), then

- $NTIME(f(n)) \subset NTIME(g(n))$

Nondeterministic Time Hierarchy Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are

time-constructible functions satisfying f(n + 1) = o(g(n)), then

Space Hierarchy Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are space-constructible functions

- $NTIME(f(n)) \subset NTIME(g(n))$

Nondeterministic Time Hierarchy Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are

time-constructible functions satisfying f(n + 1) = o(g(n)), then

Space Hierarchy Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are space-constructible functions satisfying f(n) = o(g(n)), then

- $NTIME(f(n)) \subset NTIME(g(n))$

Nondeterministic Time Hierarchy Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are

time-constructible functions satisfying f(n + 1) = o(g(n)), then

satisfying f(n) = o(g(n)), then

- $NTIME(f(n)) \subset NTIME(g(n))$

Space Hierarchy Theorem: If $f : \mathbb{N} \to \mathbb{N}, g : \mathbb{N} \to \mathbb{N}$ are space-constructible functions

 $DSPACE(f(n)) \subset DSPACE(g(n))$