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Hierarchy Theorems
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Machine as Strings and Universal TM

Recall:

•  denotes the encoding of .⟨M⟩ M

•  denotes the TM that binary string  represents.Mα α

• Every TM is represented by infinitely many strings. (Add s in the end that are ignored.)1

Theorem: There exists a TM  such that , .U ∀x, α ∈ {0,1}* U(x, α) = Mα(x)

output of  on  Mα x

Moreover,

if  halts on  within  steps, Mα x T then  on  halts in  steps,U (α, x) CT log T where  dependsC
only on  alphabet size, number of tapes, and number of states.M′￼αs
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Diagonalization

Diagonalization is any technique that relies solely upon the following properties of TMs:

• The existence of an effective representation of Turing machines by strings.

• The ability of one TM to simulate any another without much overhead in running time or 

space.

Diagonalization is used in Hierarchy theorems and Ladner’s theorem.
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Nondeterministic Time Hierarchy Theorem: If  are f : ℕ → ℕ, g : ℕ → ℕ
time-constructible functions satisfying , thenf(n + 1) = o(g(n))

NTIME   NTIME( f(n)) ⊂ (g(n))

Space Hierarchy Theorem: If  are space-constructible functionsf : ℕ → ℕ, g : ℕ → ℕ
satisfying , thenf(n) = o(g(n))

DSPACE   DSPACE( f(n)) ⊂ (g(n))


